Consequences of giant impacts in early Mars: Core merging and Martian dynamo evolution
نویسندگان
چکیده
A giant impact is an increasingly popular explanation for the formation of the northern lowland on Mars. It is plausible that at the impact time both Mars and the impactor were differentiated with solid silicate mantles and liquid iron cores. Such a large impact likely resulted in merging of the cores of both bodies, a process which will have implications on the thermal state of the planet. We model the evolution of the Martian mantle following a giant impact and characterize the thermochemical consequences of the sinking of an impactor’s core as a single diapir. The impact heating and the viscous heating induced during the core merging may affect the early thermal state of Mars during several tens ofmillion years. Our results show that large viscosity contrasts between the impactor’s core and the surrounding mantle silicates can reduce the duration of the merging down to 1 kyr but do not modify the merging temperature. When the viscosity contrast between the diapir and the surrounding silicates is larger than a factor of 1000, the descent of the diapir can lead to some entrainment of the relatively shallow silicates to deepest regions close to the core-mantle boundary. Finally, the direct impact heating of Martian core leads to thermal stratification of the core and kills the core dynamo. It takes on the order of 150–200 Myr to reinitiate a strong dynamo anew. The merging of the impactor’s core with the Martian core only delays the reinitiation of the dynamo for a very short time.
منابع مشابه
Giant impacts on early Mars and the cessation of the Martian dynamo
[1] Although Mars currently has no global dynamo-driven magnetic field, widespread crustal magnetization provides strong evidence that such a field existed in the past. The absence of magnetization in the younger large Noachian basins suggests that a dynamo operated early in Martian history but stopped in the mid-Noachian. Within a 100 Ma period, 15 giant impacts occurred coincident with the di...
متن کاملCould giant basin-forming impacts have killed Martian dynamo?
The observed strong remanent crustal magnetization at the surface of Mars suggests an active dynamo in the past and ceased to exist around early to middle Noachian era, estimated by examining remagnetization strengths in extant and buried impact basins. We investigate whether the Martian dynamo could have been killed by these large basin-forming impacts, via numerical simulation of subcritical ...
متن کاملGiant impact stratification of the Martian core
[1] We investigate the direct thermal effects of giant impacts on the Martian core and its dynamo. Shock wave heating of Mars is calculated in terms of the impact velocity and the final basin size. Although much of the shock wave heat is deposited in the mantle, shock heating from a giant impact produces non-uniform temperatures in the core, leading to an overturn event and stable thermal strat...
متن کاملGeologic Evolution of Mars’ North Polar Layered Deposits and Related Materials from Mars Odyssey THEMIS
Planetary geodynamo are driven bythermal or compositional convection in the core. Marsis thought to have possessed a geodynamo whichceased ~0.5 Gyr after the formation of the planet. Apossible, but ad hoc, explanation for this behavior is isan early episode of plate tectonics, which drove coreconvection by rapid cooling of the mantle. In this pa-per we examine an alt...
متن کاملBracketing the End of the Martian Dynamo: the Ages and Magnetic Signatures of Hellas and Ladon Basins
The Ladon basin is the only basin on Mars which shows the clear effects of impact demagnetization (like the giant basins Hellas, Argyre, Utopia and Isidis) but which also contains a significant central magnetic anomaly, as determined by electron reflection (ER) magnetometry. This suggests thermoremanent magnetization of the cooling central melt pool in the presence of a dynamo-driven magnetic f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017